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Introduction

I Machine learning problems may involve thousands or even millions of
features for each training set

I Model training in this case may require considerable computing time
I It can also be hard to find a good solution
I This kind of problem characterizes the curse of dimensionality
I It is usually possible to reduce the number of features
I Dimensionality reduction accelerates training time and it is useful for

data visualization
I Reducing the number of dimensions down to two or three makes possible

to plot a high-dimensional training set and to visually detect patterns
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What is dimensionality reduction?

Dimensionality reduction

It is the process of taking data in a high dimensional space and mapping
them into a new space whose dimensionality is much smaller.
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The curse of dimensionality

I Human intuition normally fails when trying to image a high-dimensional space
I Even a 4D hypercube may be hard to picture in human mind
I The more dimensions a training set has, the greater the risk of overfit
I One solution to the curse of dimensionality comprises in increasing the size of the training

set to reach a sufficient density of training samples
I In practice, the number of training samples required to reach a certain density grows

exponentially with the number of dimensions
I For example, a data set with 100 features, would require more training samples that the

number of atoms in the observable universe for training samples to be within 0.1 each of
other on average, assuming they were spread out uniformly across all dimensions
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What are the reasons to reduce data dimensionality (1/4)?

Data compression

I Reduce data from 2D to
1D

x1 ∈ R 7→ z1 ∈ R
x2 ∈ R 7→ z2 ∈ R

...
xn ∈ R 7→ zn ∈ R
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What are the reasons to reduce data dimensionality (2/4)?

Table 1: World Happiness Report

CR HR HS WH WL GDP FM LE FR GE TGC DY

Norway 1 7.5 7.59 7.47 1.61 1.53 0.79 0.63 0.36 0.31 2.27
Denmark 2 7.52 7.58 7.46 1.48 1.55 0.79 0.62 0.35 0.40 2.31
Iceland 3 7.50 7.62 7.38 1.48 1.61 0.83 0.62 0.475 0.15 2.32
Switzerland 4 7.494 7.56 7.42 1.56 1.51 0.85 0.62 0.29 0.36 2.27
Finland 5 7.46 7.52 7.41 1.44 1.54 0.80 0.61 0.24 0.38 2.43
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What are the reasons to reduce data dimensionality (3/4)?

Data visualization
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What are the reasons to reduce data dimensionality (4/4)?

I Dimensionality reduction can be used to:
I reduce storage and computing time
I help us on understanding a model (e.g., interpretability)
I find meaningful structure of the data
I visualize the data (e.g., in 2 or 3 dimensions)
I remove irrelevant features that can lead a model to have difficulty in

learning
I reduce the cost of data acquisition
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There are different strategies to reduce data dimensionality

I Feature selection: select m features m < p, ignoring the remaining ones
I Approaches:

I Filtering: applies a statistical measure to assign a score to each feature
(e.g., correlation, x2-test)

I subset selection: finds the best set of features for a specific predictive
model

I Embedded: simultaneously fits a model and learn which features should be
included
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Overview of feature selection strategies
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Subset selection

I It aims to find the subset of features that leads to the best-performing
model

I Therefore, a brute force strategy needs to deal with 2p subsets
I We can embrace a forward search strategy

I at each step, we add the best feature to train a predictor
I Given a dataset D = (X , ŷ), where X ∈ Rn,p, a subset of variables
ε ⊂ {1, . . . , p}, and a E(F) the error of a predictor trained only using the
features in F .
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Subset selection

I Forward search algorithm
1 F ← [ ∅
2 Find new best feature to include in F :

j∗ = argmin
j ∈ {1,...,p}

E(F ∪ {j})

3 stop if E(F) < E(F ∪ {j})
4 else F ← [ F ∪ {j}; go to step 2;

I What is the complexity?
I In the worst case (F = {1, . . . , p}), it’s O(p2)

I Other alternative strategies include:
I Backward search: starting from {1, . . . , p}, eliminate the feature
E(F \ {j}) ≥ E(F)

I Floating search: add q features and remove r features
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Feature extraction

I Project p features on m < p new dimensions
I There are different methods for linear and non-linear problems, and most

of them are unsupervised methods
I Linear methods

I Principal Component Analysis (PCA)
I Factor Analysis (FA)
I Non-negative Matrix Factorization (NMF)
I Linear Discriminant Analysis (LDA)

I Non-linear methods
I Multidimensional scaling (MDS)
I Isometric feature mapping (Isomap)
I Locally Linear Embedding (LLE)
I Autoencoders
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What is principal component analysis?

Principal component analysis (PCA)
I It is a mathematical procedure that transforms a number of possibly

correlated variables into a smaller number of uncorrelated variables
called principal components

I The first principal component accounts for the maximum variability of
the data, and each succeeding component accounts for as much of the
remaining variability

I PCA aims to find a low-dimensional space such that variance is
maximized when the data are projected on that space.

I It is an unsupervised method, as we look only at the data and not on
any label.

I This method requires feature standardization
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Feature standardization

1 Variance of feature j in dataset D, D = {x1, . . . , xp} x ∈ Rnxp

σ2
j =

1
n

n∑
i=1

(xi
j − µj)

2

µj =
1
n

n∑
i=1

xi
j

2 Data normalization:
I mean centering: give each feature a mean of 0
I variance scaling: give each feature a variance of 1

xi
j ←[

xi
j − µj

σj
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PCA algorithm

PCA
Principal components are features constructed as linear combinations of
given features. In this case, the first principal component is given by the
direction of the maximum variance in the data. The second principal
component is the direction of maximum variance orthogonal to the first
component, and so on.

Goal
Find a low-dimensional space such that variance is maximized when the
data are projected on that space.

I Assumption: data are centered (i.e., they have zero mean)
I When they don’t, we have to subtract the mean:

X ← [ X − µ
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PCA algorithm

I We want to project x in the direction of a matrix w, ||w|| = 1

z = Xw

I The dimensions of z, X, and w are: (n, 1), (n, p), and (p, 1), where n is the
number of samples, p is the number of features.

I We can compute Var(z) in function of X and w

Var(z) = Var(Xw)
= Var(XTwT)
= E[((XTwT)− E[wTXT ])2]
= E[(wTXT − wTE[X]2)]
= E[wTXTXw]
= wTE[XTX]w

I The dimensions are: (1, p) x (p, n) x (n, p) x (p, 1)
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Computing the principal components: algorithm

I Reducing data from n-dimensions to k-dimensions
I Compute the covariance matrix Σ

Σ =
1
n

n∑
i=1

xixiT

I Compute the eigenvectors of matrix Σ

U, S,V = svd(Σ)
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Computing the principal components: theory behind

Let X ∈ Rnxp be a centered matrix of covariance Σ = 1
n XTX. The principal

components of X are the eigenvectors of Σ, ordered by their decreasing
eigenvalues.

I For all vector ~w ∈ Rp, the variance of the project of X 7→ ~w is wTΣw
I The projection of X ∈ Rnxp onto ~w ∈ Rp is the vector~z

~z = Xw

I X is centered. It means that the mean of~z is:

= 1
n

n∑
i=1

zi

= 1
n

n∑
i=1

p∑
j=1

xi
jwj

= 1
n

p∑
j=1

wj

n∑
i=1

xi
j

= 0
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Computing the principal components: theory behind

I Var[~z]
Var[~z] = 1

n~w
TXTX~w

= ~wTΣ~w

I Let ~w1 ∈ Rp be the first principal component. Thus ~w1 is orthogonal in a
way that the variance of X~w1 is maximal

~w1 = argmax
~w∈Rp

~wTΣ~w

subject to||~w1||2 = 1

I This represents a quadratic optimization problem, under the constraint of
g(~w) = 0. In that case, we can solve it introducing the Lagrange multiplier
α1 > 0

L(α1, ~w) = ~wTΣ~w− α1(||~w||2 − 1)

I Due to the strong duality, the maximum of ~wTΣ~w subject to ||~w||2 = 1 is
the minα1 sup

~w∈Rp
L(α1, ~w). The supremum (least upper bound) of Lagrangien

is achieved in the point where its gradient is null

2Σ~w− 2α1~w = 0
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Computing the principal components: theory behind

I As a result, Σ ~w1 = α1~w1 and α1, ~w1 are respectively an eigenvalue and an
eigenvector of Σ. Considering all the eigenvectors of Σ, ~w1 is the one that
maximize the variance

~wT
1 Σ~w1

= α1||~w1||2
= α1
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How to choose the number of principal components?

I In principal component analysis, we take n dimensional features and
reduce them to m feature representation

I Thus, m is a parameter of the PCA algorithm, which is known as the
number of principal components

I Choose m in function of the percentage of variance explained:

1 Total variance in the data: Tr(Σ) =
p∑

i=1
λi

2 The first m principal components accounts for

m∑
i=1

λi

p∑
i=1

λi

of the total variance
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t-Stochastic Neighbor Embedding (t-SNE)

I It is nowadays a popular method proposed by Maaten and Hinton1 in 2008
I It approximates the distribution of pairwise distances in the data following a t-distribution2

argmin
Q

n∑
i=1

KL(Pi|Qi)

I where:

I Q follows a t-distribution
I KL is the Kullback-Leibler divergence (i.e., it measures how much P diverges

from Q)
I Pi is the distribution of the conditional probability that xi picks xj as a

neighbor. In this case, neighbors are picked in proportion to their probability
density under a Gaussian centered in xi. Pi = 1√

2πσ2 exp(− ||x
j−xi||2

sσ2 )

1Laurens van der Maaten and Geoffrey Hinton. “Visualizing data using t-SNE”. In: Journal of
Machine Learning Research 9.Nov (2008), pp. 2579–2605. URL:
jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf.

2Martin Wattenberg, Fernanda Viégas, and Ian Johnson. “How to Use t-SNE Effectively”. In:
Distill (2016). URL: distill.pub/2016/misread-tsne.
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Multidimensional scaling (MDS)

Goal
Find a mapping that preserves the dissimilarities between the data points.

argmin
Z∈Rnxm

n∑
t=1

n∑
u=t+1

(||zt − zu|| − dtu)2

I dtu = ||xt − xu|| In Euclidean space, which is similar to PCA
I Therefore, dissimilarity can also come from other metrics d : X xX 7→ R+

I identity of indiscernible: d(x, v) = 0⇔ x = v
I symmetry: d(x, v) = d(v, x)
I triangular inequalities: d(x, v) ≤ d(x,w) + d(w, v)
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