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House price prediction

Dataset of housing prices

Living area (m2) Price ($1000)

196 400
149 330
223 369
132 232
279 540

...
...
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Why do we need to study supervised linear models?

I Linear model provides an introduction to core concepts of
machine learning

I It may be employed for a variety of reasons:
1 to produce a so-called trend line (or curve) that can be used to help

visually summarize
2 drive home a particular point about the data under study
3 learn a model so that precise predictions can be made regarding

output values in the future
I Many real process can be approximated with linear models
I Linear regression usually appears as a module of large systems
I Linear problems can be analyzed analytically
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Variable types and terminology

I An input variable also called feature is denoted by x(i)

I y(i) denotes an output or target variable
I A pair (x(i), y(i)) is called a training sample
I (x(i), y(i)); i = 1, . . .m denotes the training set
I X ∈ R denotes the space of input values, and Y ∈ R denotes the

space of output values
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Stating the learning task

Learning task

I Given the value of an input vector X , make a good
prediction of the output Y, denoted by Ŷ. If Y takes
values in R, then so should Ŷ

I Assuming that we have a training set (x(i), y(i)) or
(x(i), g(i)), i = 1, . . . ,m, where each input x(i) ∈ R is
column vector.

I The goal of supervised learning models comprises in
giving the “right answer” for each example in the data

I Regression models aim to predict real-valued
outputs
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I How do we represent h?
hθ(x) = θ0 + θ1x

I Linear regression with one
variable

I Univariate linear regression
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Linear regression

I h : X → y is a linear combination of the input variables

hθ(x) = θ0 + θ1x1 + θ2x2 + · · · + θnxn = θ0 +

n∑
i=1

θixi

I where,
I θ0, θ1, . . . , θn are the parameters (i.e., weights) of the model
I θ0 is the intercept, also known as bias or offset in machine

learning
I We assume that x1 = 1 and thus, we include θ0 in the coefficients θ.

Thus

hθ(x) =

n∑
i=0

θixi = θTx

I θ and x are both vectors
I n is the number of variables
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Cost function

Training set

Living area (m2) Price ($1000)

196 400
149 330
223 369
132 232
279 540

...
...

I Hypothesis: hθ(x) = θ0 + θ1x
I How to choose θ′is?

I Make h(x) as close as possible to y
I A cost function measures how close the h(xi) are to the true

value of yi

J(θ) =
1
2

m∑
i=1

(hθ(xi)− yi)
2

I Least-squares cost function that leads to the ordinary least
squares regression model
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Cost function: intuition

I Hypothesis:

hθ(x) = θ0 + θ1x

I Parameters:

θ0, θ1

I Cost function:

J(θ0, θ1) =
1
2

m∑
i=1

(hθx(i) − y(i))
2

I Goal:

minimize
θ0,θ1

J(θ0, θ1)

Simplified

I Hypothesis:

hθ(x) = θ1x

I Parameters:

θ1

I Cost function:

J(θ1) =
1
2

m∑
i=1

(hθx(i) − y(i))
2

Goal:

minimize
θ1

J(θ1)
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Least mean squares (LMS) algorithm

I Coast function:

J(θ) =
1
2

m∑
i=1

(hθ(xi)− yi)
2

I Goal: Goal:
minimize

θ
J(θ)

I Search algorithm that:
1 Starts with an initial guess for θ
2 Repeatedly changes θ to make J(θ) smaller until converge to a

value of θ that minimizes J(θ)

I Gradient descent algorithm:
1 starts with some initial θ
2 repeatedly updates θ:

θj = θj − α
∂

∂θj
J(θ) ∀ j = 0, · · · , n

3 where α is called the learning rate
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Gradient descent algorithm
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Gradient descent

Dealing with only one training example
repeat until convergence {

θj = θj − α
∂

∂θj
J(θ0, θ1)

(for j = 0 and j = 1)
}

∂

∂θj
J(θ) =

∂

∂θj

1
2

(hθ(x)− y)2

= 2 · 1
2

(hθ(x)− y) · ∂
∂θj

(hθ(x)− y)

= (hθ(x)− y) · ∂
∂θj

(
n∑

i=0

θixi − y

)
= (hθ(x)− y) xj

This gives the update rule:

θj = θj + α(y(i) − hθ(x(i)))x(i)
j
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Batch gradient descent

I Each step of gradient descent uses all the training examples
I Stochastic gradient descent
I Mini-batch gradient descent
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Batch gradient descent

repeat until convergence {

θ0 := θ0 − α 1
m

∑m
i=1

(
hθ
(

x(i)
)
− y(i)

)
θ1 := θ1 − α 1

m

∑m
i=1

(
hθ
(

x(i)
)
− y(i)

)
x(i)

 update θ0 and θ1

simultaneously

}
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Mini-batch gradient descent

I Each step of gradient descent uses b training examples
I For instance, b = 10 and m = 1000

repeat until convergence {
for i = 1, 11, 21, . . . , 991 {

θ0 = θ0 − α
1
10

i+9∑
i=k

(hθ(x(i))− y(i))

θ1 = θ1 − α
1
10

i+9∑
i=k

(hθ(x(i))− y(i))x(i)

}
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Stochastic gradient descent

Each step of gradient descent uses one training example
repeat until convergence {

for i = 1, . . . ,m {

θj = θj − α(y(i) − hθ(x(i)))x(i) (for every j)

}
}
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Exploring the Boston housing dataset

I We will explore the Housing dataset, which contains information
about houses in the suburbs of Boston

I It was collect by Harrison Jr and Rubinfeld1 in 1978
I The Housing Dataset has been made freely available and it can

be download from the UCI machine learning repository at
archive.ics.uci.edu/ml/machine-learning-databases/housing

I It comprises 506 samples and 13 features. Thus, the goal is to
predict the price of the houses using the given features

1David Harrison Jr and Daniel L Rubinfeld. “Hedonic housing prices and the
demand for clean air”. In: Journal of environmental economics and management 5.1
(1978), pp. 81–102.
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Assessing regression model performance

I Residual sum of squares (RSS)

RSS =
n∑

i=1

(yi − f (xi))
2

I Root-mean squared error (RMSE)

RMSE =

√√√√√ n∑
i=1

(yi − f (xi))2

n

I Relative squared error (RSE)

RSE =

n∑
i=1

(yi − f (xi))
2

n∑
i=1

(yi − ȳ)2

I Coefficient of determination

R2 = 1− RSE
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Learning curves

I When building a data model, our goal is to design one that better
fits the data

I How to assess that we are building a good enough model?
I In other words, what can we do to check that the model is not

overfitting or underfitting the data?
I A model is overfitting when it performs well on training data, but

generalizes poorly on test data
I A model is underfitting when it performs poorly on both training

and test sets
I We can use learning curves to visualize the performance of a

model on training and test sets as a function of the training size
I To generate them, we have to train the model on different sized sets
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Example of learning curves
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I When a model is underfitting the training data, adding more
training example is useless. We must use a more complex model
or come up with better features

I On the other hand, when a model is overfitting, we can feed it
more training examples until the validation error reaches the
training error

Alessandro Leite Linear Regression Models October 25th, 2019 28 / 72



Bias, variance, and trade-off

I A model generalization error can be expressed as the sum of its
bias, variance, and irreducible error

I Bias comprises the wrong hypotheses, such as assuming that the
data follow a linear law. A high-biased model is most likely to
underfit the training data

I Variance comprises excessive sensitivity for small variations in
the training data. A model with high-degree of freedom usually has
high-variance, and thus is most likely to overfit the training data.

I irreducible error comprise the noises of the data. One way to
reduce this part of the generalization error is to clean up the data.

I Trade-off:
I increasing a model’s complexity commonly increases

its variance and reduces its bias
I Reducing a model’s complexity increases its bias and

reduces its variance
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How to define learning in machine learning?

I Several questions arise when designing and analyzing algorithms
that learn from data. Examples of questions include:

1 What can be learned efficiently?
2 What is inherently hard to learn?
3 How many examples are needed to learn successfully?
4 Is there a general model of learning?

I The Probably Approximately Correct (PAC) learning framework
helps defines the class of learnable concepts in terms of number
of sample points needed to achieve an approximate solution,
sample complexity, and the time and space complexity of a
learning algorithm.
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How to assess learning in machine learning?

I Let us denote X the set of all possible examples, Y the set of all
possible label or target values, and that Y = {0, 1}

I A concept c : X 7→ Y is a mapping from X to Y.
I C is a concept class that comprises the concepts we may wish to

learn
I The learning problem can be formulated as follows:

I The learner considers a fixed set of all possible concepts H, called
hypothesis set, with input sample S = (xi, . . . , xp) draw i.i.d
according to D as well as the labels c(xi), . . . , c(xp) with c ∈ C

I The task comprise in using the labeled sample S to select a
hypothesis hs ∈ X that as a small generalization error with respect
to c.

I The generalization error of a hypothesis h ∈ H is also known as
the risk or true error.
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Learning assessment in machine learning

Generalization error
Given a hypothesis h ∈ H, a target concept c ∈ C, and an underlying
distribution D, the generalization error or risk of h is defined by

R(h) = P
x∼D

[h(x) 6= c(x)] = E
x∼D

[1h(x)6=c(x)]

I Since both the distribution D and the target concept c is unknown,
a learner cannot direct access the generalization error. It can only
measure the empirical error of a h ∈ H on the labeled sample S
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Empirical error

Empirical error
I Given a hypothesis h ∈ H, a target concept c ∈ C, and a sample

S = (xi, . . . , xn), the empirical error or empirical risk of h is defined
by

R̂s(h) =
1
n

n∑
i=1

1h(xi) 6=c(xi)

I The empirical error of h ∈ H is its average error over the sample
S, while the generalization error is its expected error based on
the distribution D
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PAC-Learning

PAC-learning
I A concept class C is said to be PAC-learnable if there exists an

algorithm A and a polynomial function poly(., ., ., .) such that for
any ε > 0 and δ > 0, for all distributions D on X and for any target
concept c ∈ C, the following holds for any sample size
m ≥ poly(1

ε ,
1
δ , n, size(c))

P
S∼Dm

[R(hs) ≤ ε] ≥ 1− δ

I if A further runs in poly(1
ε ,

1
δ , n, size(c)), the C is considered to be

efficiently PAC-learnable.
I When such A exists, it is called a PAC-learning algorithm for C
I The parameter δ > 0 defines the confidence interval 1− ε and
ε > 0 the accuracy 1− ε.
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Learning comprises generalization

I Machine learning is fundamentally about generalization
I The problem comprises in selecting a function out of a hypothesis

set, that is a subset of the family of all functions
I The selected function is subsequently used to label all instances,

including unseen examples
I How should a hypothesis set be chosen?

I With a rich or complex hypothesis set, the learner may choose a
predictor that is consistent with the training set

I With a less complex one, it may have unavoidable errors on the
training set

I Which one will lead to a better generalization?
I How should we define the complexity of a hypothesis set?
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What is generalization?

I It is the ability of a model to adapt properly to unseen data drawn
from the same distribution as the one used to create the model

I Data are noisy, for different reasons
1 errors during the acquisition phase
2 errors in labeling the data points
3 hidden or latent features

I We learn f by minimizing some variant of empirical risk, what can
you say about the true risk?

I Two factors determine generalization ability:
1 model complexity
2 training set size
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Understanding overfitting & underfitting

β0 + β1x

Underfitting 7→ “high bias”

β0 + β1x + β2x2 + β3x3

“Just right”

β0 + β1x + · · · + β15x15

“overfitting” 7→ “high variance”

I In the Overfitting scenario, the learned hypothesis may fit the training set very well, but fail, but fail to generalize to new

examples

I It is usually caused by complicated function that creates various unnecessary curves and angles unrelated to the
data

I It has a large estimation error

I Underfitting or high bias occurs when the hypothesis function maps poorly to the trend of the data

I It is usually caused by a function that is very simple or that uses only few features

I It has a large approximate error
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Generalization error vs. model complexity trade-off
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Fixed model complexity vs. dataset size
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Bias vs. variance trade-off

I Bias is the difference between the expected value of the estimator
and the real value predicted by the estimator

Bias(f (x)) = E[f (x)− y]

I A simple model has a high bias
I High bias can lead to underfitting

I Variance is the deviation from the expected value of the estimates

Var(f (x)) = E[(f (x)− E(f (x)))2]

I A complex model has a high variance
I High variance usually leads to overfitting
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Bias vs. variance trade-off
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Addressing overfitting

1 Reduce the number of features
I Manually select which feature to keep
I Model selection algorithm

2 Regularization
I Keeps all the features, but reduce the magnitude of the parameters
I It works when there are many features contributing to predict y
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Supervised learning assumption

I Training set D = {xi, yi}i=1..n

I Regression yi ∈ R
I Classification yi ∈ {0, 1}
I Goal: find a function f on the training set such that f (xi) ≈ yi

I Empirical error of f on the training set, given a loss function L

E(f |D) =
1
n

n∑
i=1

L(yi, f (xi))

I Regression
L(yi, f (xi)) = (yi − f (xi))

2

I Classification
L(yi, f (xi)) = 1yi 6=f (xi)
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Empirical error

I On the training set, it is a poor estimate of the generalization
error

I If the model is overfitting, the generalization error can be arbitrarily
large

I Our goal is to estimate the generalization error on unseen data,
which we might not have
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Complex learning models may lead to unstable behavior

I Complex learning algorithms can become unstable; i.e., highly
dependent of the training data

I Instability is a manifestation of a tendency to overfit
I Regularization is a general method to avoid such overfitting by

applying additional constraints to the weights vector
I A common strategy is to make sure that the weight are, on

average, small in magnitude, which is known as shrinkage
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Unstable learning algorithm tends to overfit

I A regularization function measures the complexity of the
hypotheses

I It can be also seen as a stabilizer of the learning algorithm
I An algorithm is considered stable if a slight change of its input

does not change its output too much
I Let A be a learning algorithm, S = (zi, . . . , zm) be a training set of m

examples and A(S) denote the output of A
I We can say that algorithm A is suffering from overfitting if the

difference between the true risk of its output Ld(A(S)), and the
empirical risk of its output Ls(A(S)) is large.

I Thus, our interest is in the expectation

Es[LD(A(S))− Ls(A(S))
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Unstable learning algorithm tends to overfit

I In this case, stability can be defines as:
I let z′ be an additional example
I S(i) be the training set obtained by replacing the ith example of S

S(i) = (zi, . . . , zi−1, z′, zi+1, . . . , zm)

I Stability measures the effect of the small change of the input on
the output of A by comparing the loss of the hypotheses A(S) on zi

to the loss of the hypotheses A(S((i))) on zi.
I A good learning algorithm will have `(A(S(i)), zi)− `(A(S), zi) ≥ 0,

since in the first term the learning algorithm does not observe the
example zi while in the second the term zi is indeed observed

I If the difference is very large, the learning algorithm might been
overfitting

I Examples of regularized linear models include: Rigde
Regression, Lasso Regression, and Elastic Net
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Ridge regression

I It adds a regularization term α
n∑

i=1
θ2

i to the cost function

I The regularization term α forces the learning model to not only fit
the data but also to keep the weights of the model as small as
possible

I The regularization term α is only used during the training phase
I In this case, the regularization term α is a hyperparameter that

controls how much the want to regularize the model
I When α = 0, ridge regression is just a linear regression model
I When α is a large value, all the weights end up close to zero, and

the result is a flat line going through the data’s mean
I Cost function:

J(θ) = MSE(θ) + α
1
2

n∑
i=1

θi
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Ridge Regression

I It is based on sum of squared residuals penalty

θ̂ridge = argmin
θ

(y− Xθ)T(y− Xθ) + α||θ||2

I where ||θ||2 =
p∑

i=1
θ2

i is the squared norm of the vector θ, or

equivalently the dot product θTθ

I α is a scalar determining the amount of the regularization
I Its closed-form can be written as:

θ̂ = (XTX + αI)−1XTy

I Ridge regression shrinks the coefficients towards 0, but does not
lead to a sparse model
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Ridge regression: example with simulated data
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Ridge regression: predicting Boston housing price
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Lasso regression

I Least absolute shrinkage and selection operator regression
method adds a regularization term to the cost function

I It uses the l1 norm of the weights vector instead of the half square
of the l2 norm

J(θ) = MSE(θ) = α

n∑
1

|θi|

I An important characteristics of Lasso is that it tends to completely
remove the weights of the least important features

I It means that Lasso regression automatically perform feature
selection
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Lasso

θ̂lasso = argmin
θ
||y− θ||22 + α||θ||1

I It stands for Least absolute shrinkage and selection operator

I It replaces the ridge regularization term
n∑

i=1
θ2

i with the sum of the

absolute weights
n∑

i=1
|θi|

I Lasso regression favors sparse solutions
I It is quite sensitive to the regularization parameter α
I There is no closed form solution and numerical optimization

technique must be applied
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Lasso regression: example
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In summary

I Ridge regression
I correlated variables get similar weights
I identical variables get identical weights
I It is not sparse

I Lasso
I correlated variables are randomly picked out
I It is sparse
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Elastic Net

I The regularization term is a mix of both Ridge and Lasso’
regularization terms, and it controls the mix ratio r
I When r = 0, Elastic Net is similar to Ridge regression
I When r = 1, it is equivalent to Lasso regression

I Cost function

J(θ) = MSE(θ) + rα
n∑

i=1

|θi|+
1− r

2
α

n∑
i=1

θ2
i
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When should we use Linear Regression, Ridge, Lasso, or Elastic
Net?

I It is almost a good choice to implement some regularization
I Ridge regression is usually good default option
I Lasso or Elastic Net should be preferred when observed that

only few features are useful, since they tend to remove useless
features’ weights

I In general, Elastic Net is preferred over Lasso as Lasso may
behave incorrectly when the number of features is greater than the
number of training instances or when many features are correlated
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Empirical vs. true risk

I In general, it is defined by

R(f ) = Remp + overfit penalty

I Overfit penalty depends on the complexity of the model
I Regularization approximates the overfit penalty. When the

complexity of the model increases, we set up a larger overfit
penalty

I Cross-validation tries to estimate R(f ) directly
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Holdout method

I Holdout method is a popular approach for estimating the
generalization performance of machine learning models

I Using holdout method, we split the initial dataset into training
and test sets

Training Validation

I We want to choose a model that performs best on a validation
set independent of the training set

I Since we have not used the validation data during the training
phase, the validation set can be considered unseen data

I In this case, the error on the validation set is an estimation of the
generalization error

I What is another issue in this approach?
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Model selection is a classification problem

I We are interested in tuning and comparing different parameter
settings to further improve the performance, for making prediction
on unseen data

I This process is called model selection
I Model selection refers to a given classification problem for which

we want to select the optimal values of tuning parameters
I Therefore, if we reuse the same dataset over and over again

during model selection, it will become part of our training data and
thus the model will be more likely to overfit
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Dealing with multiple models

I What should we do if we want to choose among k different
models?

1 We have to train each model on the training set
2 Then, compute the prediction error of each model on the validation

set
3 Finally, select the model with the smallest prediction error on the

validation set
I In that case, what will be the generalization error?

I It is hard to say
I Validation data was used to select the model
I Actually, as we have looked at the validation data, it is not anymore

a good proxy for unseen data
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Holdout cross-validation

I A better way of using the holdout method for method selection
comprises in splitting the dataset into three parts: a training set, a
validation set, and a test set

I Therefore, the estimation error is sensitive to how we partition the
training and the validation sets
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Handling the problem of validation set

I We have to set aside a test set that remains untouched during the
training and the validation phases

I With the test set, we can use it to estimate the generalization error

Training Validation Test

I How we decide the size of the training, validation, and test sets?
I How do we know that we have enough data to evaluate the

prediction and the generalization errors?
I In model selection, we aim to pick the best model
I Whereas, in model assessment, we want to estimate the

prediction errors on unseen data

We can use cross-validation and bootstrap techniques to empirically
evaluate our model
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K-fold cross-validation

I k-fold cross-validation is a technique designed to give an
accurate estimate of the true error without “wasting” too much data

I In the k-fold cross-validation, the original training set is partitioned
into k folds without replacement

I k − 1 folds are used for the model training and one fold is used for
testing

I For each fold, the model is estimated on the union of the other
folds and then, the error of its output is estimated using the fold

I The average of all the errors is the estimate of the true error
I Once the best parameter is chosen, the model is retrained using

the parameters of the entire training set
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K-fold cross-validation
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K-fold cross-validation algorithm

Input:
training set S = (x1, yi), . . . , (xp, yp)
set of parameter values Θ
learning algorithm A
k (number of folds)

split S into S1, S2, . . . , Sk

foreach θ ∈ Θ do
for i = 1..k do

hi,θ = A(S \ Si; θ)

error(θ) = 1
k

k∑
i=1
LSi(hi,θ)

Output:
θ∗ = argmin

θ
[error(θ)]

hθ∗ = A(S; θ∗)
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Cross-validation performance

I Estimating the prediction error

CV(f ) = 1
n

n∑
i=1
L(yi, fk(i)(xi))

= 1
k

k∑
l=1

E(f |Dl)

I where, fk(i) is the ki-th part of the data removed
I ki is the fold in which i is
I Dl is the fold l

I Estimating the expected prediction error

Error = E[L(Y, f (X))]
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Cross-validation issues

I The training set becomes (k − 1) ∗ n/k
I small training set may lead to biased estimator of the error

I A special case of the k-fold cross-validation is the
leave-one-out (LDO); i.e., k = n
I approximately unbiased of the expected prediction error
I potential high variance, since the training sets are similar to each

other
I computation can be very difficult

I In practice, k is set up to 5 or 10.
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Bootstrap

I Randomly draws datasets with replacement from the training set
I Repeats B times (often, B = 100), which leads to B models
I Leave-one-out bootstrap error

I for each training point i, predicts with the bi < B models that did not
have i in their training set

I computes the average prediction errors
I This leads for training set that has 0.632 ∗ n distinct examples.

Why?
P(i ∈ xk) = 1− (1− 1

n)
n

≈ 1− e−1

= 0.632

I It has a high computational cost
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