
A Crash Course in Python

Alessandro Leite

October 11th, 2019

Alessandro Leite A Crash Course in Python October 11th, 2019 1 / 60

Computational Foundations

Goal
Learn the essential concepts of the Python language ecosystem.

Key topics:
1 Installing Python/Jupyter on Windows, Linux and macOS
2 Python basics:

Identifiers, expressions, and statements
Control flow
Loop
Data structures: lists, tuples, and dictionaries
Manipulating files
Modules
Randomness
Manipulating relational databases
Working with JSON files

Alessandro Leite A Crash Course in Python October 11th, 2019 2 / 60

Outline

1 Identifiers, expressions, and statements
Identifiers and keywords
Operators

2 Control flows
Iterators
Defining functions

3 Data Structures
Lists
Tuples
Dictionaries

4 Working with files
5 Modules
6 Randomness
7 Relational Databases and SQLite
8 JavaScript Object Notation

Alessandro Leite A Crash Course in Python October 11th, 2019 3 / 60

What is Python?

Python is an interpreted, high-level,
general-purpose programming language
It was Created by Guido van Rossum and first
released in 1991
Python’s design philosophy emphasizes code
readability

See The Zen of Python
(python.org/dev/peps/pep-0020)
Or execute in Python

import this

Its language constructs and object-oriented
approach aim to help programmers write clear,
logical code for small and large-scale projects

Alessandro Leite A Crash Course in Python October 11th, 2019 4 / 60

https://python.org/dev/peps/pep-0020

Identifiers

Identifiers are used to name variables, functions, classes
in Python
Must start with a letter or underscore
Must consist of letters, numbers, and underscores
Are case sensitive

Valid: spam _speed
Invalid: 23spam var.name

Different: spam Spam SPAM

Alessandro Leite A Crash Course in Python October 11th, 2019 5 / 60

Python’s keywords

Keywords cannot be used as identifiers

False class finally is return
None continue for lambda try
True def from nonlocal while
and del global not with
as elif if or yield
assert else import pass
break except in raise

Alessandro Leite A Crash Course in Python October 11th, 2019 6 / 60

Arithmetic operators

Operator Operation

+ Addition
- Subtraction
* Multiplication
/ Division
** Power
% Remainder
// Exact division (i.e., floor division)

Expressions are evaluated from left to right
Precedences rules

Parenthesis
Exponentiation
Multiplication, division, and remainder
Addition and subtraction

In Python 3, integer division results in a floating point result

Alessandro Leite A Crash Course in Python October 11th, 2019 7 / 60

Comparison operators

Operator Meaning

< Less than
<= Less than or equal to
== Equal to
> Greater than

>= Greater than or equal to
!= Not equal

Alessandro Leite A Crash Course in Python October 11th, 2019 8 / 60

Logical operators

Operator Description

and Returns True if both statements are true
or Returns True if one of the statements are true
not Negate a statement; i.e., reverse the result of a statement

Alessandro Leite A Crash Course in Python October 11th, 2019 9 / 60

Identity operators

Operator Description

is Returns True if two variables point out to the same object
is not Returns True if two variables do not point out to the same object

Alessandro Leite A Crash Course in Python October 11th, 2019 10 / 60

Membership operators

Operator Description

in Returns True if a value is present in the a specific set (e.g., list)
not in Returns True if a value is absent of a specific set

Alessandro Leite A Crash Course in Python October 11th, 2019 11 / 60

Bitwise operators

Operator Name Description

& AND Sets each bit to 1 if both bits are 1
| OR Sets each bit to 1 if one of them is 1
ˆ XOR Sets each bit to 1 if only one of them if 1
∼ NOT Inverts all the bits
� Zero fill left shift Shift left by pushing zeros in from the right and let

the leftmost bits fall off
� Signed right shift Shift right by pushing copies of the leftmost bit in

from the left, and let the rightmost bits fall off

Alessandro Leite A Crash Course in Python October 11th, 2019 12 / 60

Constants

Constants are fixed values (i.e., immutable values) such as
numbers and strings
Strings can be defined using single quote (’. . .’) or double
quotes (". . .")
Variables, literals, and constants have a type
Python knowns the difference between an integer and a string
For example, + means addition if one of the operands is a number
and a concatenation if it is a string
We can ask Python what type something is by using the type()
function
Numbers can be integers or floating point numbers

Alessandro Leite A Crash Course in Python October 11th, 2019 13 / 60

String conversions

We can use int() and float() to convert between string, integer
and floating point values
Python raises an exception if the string does not be converted to
a number

Alessandro Leite A Crash Course in Python October 11th, 2019 14 / 60

User input

We can read data from the user using the input() function
The input() function returns a string

name = input("What is your name?")
print("Welcome ", name)

Alessandro Leite A Crash Course in Python October 11th, 2019 15 / 60

If statements

if <expression> :
if body

elif <expression> :
elif body

else:
else body

There can be zero or more elif parts
The else part is optional
The keyword elif is short for else if, and is useful to avoid
excessive indentation
An if . . . elif . . . elif . . . sequence is a substitute for the switch or
case statements found in other languages (e.g., Java, C, C++)

Alessandro Leite A Crash Course in Python October 11th, 2019 16 / 60

Indentation

Python uses indentation to delimit blocks of code
This makes Python code readable
We need to be very careful with our code formatting
While spaces are ignores inside parentheses and brackets

x = float(input("Please enter a number "))
if x < 0:

print("Value is negative")
elif x == 0:

print("Value is zero")
else:

print("Value is positive")

Alessandro Leite A Crash Course in Python October 11th, 2019 17 / 60

The while statement

The while statement comprises a form to iterate in Python

while <expression>:
body

Approach
1 Evaluate the expression, yield True or False
2 If the expression if False, exit the while statement and continue the

execution after while statement
3 If the expression is True, execute the body and then go back to

step 1

A body can comprise one or more statements
We can stop a while statement through the break expression
We can “skip” some execution using the continue expression

Alessandro Leite A Crash Course in Python October 11th, 2019 18 / 60

For statements

Sometimes we want to iterate through a set of things, such as list
of words, the lines of a file, or a list of numbers
When we have a list of things to iterate through, we usually use a
for statement
a while statement is known as indefinite loop because it simply
loops until some condition becomes False, whereas the for loop
iterates through a known set of items

names = [’Sophie’, ’Bia’, ’Alice’]
for name in names:

print(’Hello ’, name)

Alessandro Leite A Crash Course in Python October 11th, 2019 19 / 60

Number sequence iteration

To iterate over a sequence of numbers, we use the function
range()
The range() function generates arithmetic progressions
For example, range(5) generates 5 values (i.e., 0, 1, 2, 3, 4)
The given end point is never part of the generated sequence
It is possible to let the range start at another number, or to specify
a different increment value. For instance

for x in range(0, 10, 2):
print(x)

To iterate over the indices of a sequence, we can combine the use
of the functions range() and len()

words = [’Mary’, ’had’, ’a’, ’little’, ’lamb’]
for i in range(len(words)):
print(i, words[i])

In some context, it is convenient to use the enumerate function
list(enumerate(words))

Alessandro Leite A Crash Course in Python October 11th, 2019 20 / 60

Functions

There are two kinds of functions in Python:
1 built-in functions – functions provided as part of core of the

language such as print(), input(), type(), float(), int(),
among others.

2 user-defined functions – functions defined by the developers

Alessandro Leite A Crash Course in Python October 11th, 2019 21 / 60

Function definition

Function
It is reusable code that can take one or more arguments, does
some computation, and then returns a result
We define a function using the keyword def
It must be followed by the function name and the list of arguments
inside the parenthesis.

def square(x):
"""Computes and returns the square of x"""
return x ** 2

The first statement of the function body can optionally be a string
literal
It comprises the function’s documentation, or docstring

Alessandro Leite A Crash Course in Python October 11th, 2019 22 / 60

Functions can have optional arguments
def ask_ok(prompt, retries=4, reminder=’Please try again!’):
while True:

ok = input(prompt)
if ok in (’y’, ’ye’, ’yes’):

return True
if ok in (’n’, ’no’, ’nop’, ’nope’):

return False
retries = retries - 1
if retries < 0:

raise ValueError(’Invalid user response!’)
print(reminder)

It can be called in different ways:
giving only the mandatory argument

ask_ok(’Do you really want to quit?’)

giving one of the optional arguments

ask_ok(’OK to overwrite the file?’, 2)

giving all the arguments

ask_ok(’OK to overwrite the file?’, 2, ’Come on, only
yes or no!’)

giving only the required argument and the last one

ask_ok(’OK to overwrite the file?’, reminder = ’Please,
only yes or no!’)

Alessandro Leite A Crash Course in Python October 11th, 2019 23 / 60

Lambda Expressions

Lambda functions are small anonymous functions created through
the keyword lambda
Lambda functions can be used wherever function objects are
required
They are syntactically restricted to a single expression

def make_incrementor(n):
return lambda x: x + n

This function returns another function

f = make_incrementor(10)
f(1)

Alessandro Leite A Crash Course in Python October 11th, 2019 24 / 60

Void and fruitful functions

When a function does not return a value, we call it a void function
Functions that return a value are called fruitful functions
Void functions are “non-fruitful” functions

Alessandro Leite A Crash Course in Python October 11th, 2019 25 / 60

The are some advantages to create functions

Functions enable us to organize our code into paragraphs
Each paragraph (i.e., function) captures a complete through
Allows us to avoid repetitions
Promotes reuse – make it work once and the reuse it
To break long or complex concepts into logical chunks and to
encapsulate them across different functions

Alessandro Leite A Crash Course in Python October 11th, 2019 26 / 60

Working with strings

Strings can be indexed with the first character having index equals
to 0
Indices may also be negative numbers, to start counting from the
right
In addition to indexing, slicing is also supported
Indexing is used to obtain individual characters, whereas slicing
allows you to obtain substring

word = "Mary"
word[0] # M
word[-1] # y
word[0:3] # Mar

The start index is always included, and the end is always excluded

Alessandro Leite A Crash Course in Python October 11th, 2019 27 / 60

Common string functions

Function Description

len returns the number of characters in a string
strip removes while spaces from the beginning and end of a

string
format performs a string formatting operation. The string can con-

tain literal text or replacement field delimited by curly braces
{}

find returns the lowest index in the string where a substring is
found

We can get a list of all available built-in functions of string, by
executing

dir(str)

Alessandro Leite A Crash Course in Python October 11th, 2019 28 / 60

A list is the most fundamental data structure in python

Like a string, a list comprises a sequence of values
In a string, the values are characters; whereas in a list, they can
be any type
The values in list are called elements or sometimes items
The simplest way to create a list is to enclose the elements in
square brackets ([and])
We can create an empty list with empty brackets, []
Lists can contain another lists

cheeses = [’Cheddar’, ’Edam’, ’Gouda’]
names = ["Alice", "Sophie", "Mary"]
empty = []
values = [cheeses, names]

Alessandro Leite A Crash Course in Python October 11th, 2019 29 / 60

Lists are mutable

The syntax for accessing the elements of a list is the same as for
accessing the characters of a string —the bracket operator
The expression inside the brackets specifies the index
Unlike strings, lists are mutable because we can change the order
of items in a list or reassign an item in a list

names[1] = "Elsa"

Any integer expression can be used as an index
If we try to read or write an element that does not exist, we get an
IndexError

The in operator also works on lists
names = ["Alice", "Elsa", "Mary"]
name = input(’Give a name ’)
if name in names:
print("The name {} was found".format(name))

else:
print("Unknown name {}".format(name))

Alessandro Leite A Crash Course in Python October 11th, 2019 30 / 60

Traversing a list

The common way to traverse a list is with a for loop

for name in names:
print(name)

numbers = range(0, 10)
for i in range(len(numbers)):

numbers[i] = numbers[i] * 2

Although a list can contain another list, the nested list still counts
as a single element

names = ["Alice", "Sophie", "Mary"]
ages = [9, 12, 20]
people = [cheeses, names]

print(len(people))

The length of the list people is 2

Alessandro Leite A Crash Course in Python October 11th, 2019 31 / 60

Concatenating lists

We can use either use the + operator to concatenate two lists or
the method extend of lists

cheeses = [’Cheddar’, ’Edam’, ’Gouda’]
cheeses.extend([’Roquefort’, ’Brie’])
print(cheeses)

cheeses += [’Feta’, ’Mozzarella’, ’Burrata’]
print(cheeses)

The slice operator also works on lists
cheeses[:2]

A slice operator on the left side of an assignment can update
multiple elements of a list

options = [’a’, ’b’, ’c’, ’d’, ’e’, ’f’]
options[1:3] = [’x’, ’y’]

print(options)

Alessandro Leite A Crash Course in Python October 11th, 2019 32 / 60

List methods

The method append adds a new element to the end of a list
cheeses = [’Cheddar’, ’Edam’]
cheeses.append(’Mozzarella’)
print(cheeses)

sort arranges the elements of the list from low to high
cheeses = [’Cheddar’, ’Mozzarella’, ’Burrata’, ’Edam’, ’

Feta’]
cheeses.sort()

print(cheeses)

If we don’t want to change our list, we can use the sorted
function, which returns a new list
cheeses = [’Cheddar’, ’Mozzarella’, ’Burrata’, ’Edam’, ’

Feta’]
cheeses_sorted = sorted(cheeses)

print(cheeses)
print(cheeses_sorted)

Alessandro Leite A Crash Course in Python October 11th, 2019 33 / 60

Deleting elements

There are several ways to delete elements from a list
If we know the index of the element you want to delete, we can
use pop method

numbers = [1, 5, 8]
number = numbers.pop(1)

print(numbers) # [1, 8]
print (number) # 5

pop modifies the list and returns the element that was removed
If we don’t provide an index, it deletes and returns the last
element

Alessandro Leite A Crash Course in Python October 11th, 2019 34 / 60

Deleting elements (cont.)

If we don’t need the removed value, we can use the operator del

numbers = [1, 5, 8]
del numbers[1]
print(numbers) # [1, 8]

If we know the element to remove, but not the index, we can use
method remove

numbers = [1, 5, 8]
numbers.remove(5)
print(numbers) # [1, 8]

We can remove more than one element, you can use del with a
slice index

numbers = [1, 5, 8]
del numbers[0:2]
print(numbers) # [8]

Alessandro Leite A Crash Course in Python October 11th, 2019 35 / 60

List comprehensions

Frequently, we need to transform a list into another one, by
choosing only certain elements
A way to do this in Python is through list comprehensions

even_numbers = [x for x in range(5) if x % 2 == 0]
squares = [x * x for x in range(5)]

even_squares = [x * x for x in even_numbers]

A list comprehensions can include multiple loops:

pairs = [(x, y)
for x in range(10)
for y in range(10)]

Alessandro Leite A Crash Course in Python October 11th, 2019 36 / 60

Working with tuples

Tuples are another kind of sequence that functions much like a list
Tuples have elements which are indexed starting at 0
Pretty much anything we can do to a list that doesn’t change its
state, we can do to a tuple
We can specify a tuple by using parentheses or nothing instead of
square brackets

cheeses = (’Cheddar’, ’Mozzarella’, ’Burrata’)
names = (’Alice’, ’Elsa’, ’Mary’)

Tuples are a convenient way to return multiple values from a
function

def sum_and_product(x, y):
return (x + y), (x * y)

Unlike a list, once we created a tuple, we cannot alter its contents

Alessandro Leite A Crash Course in Python October 11th, 2019 37 / 60

Tuples are more memory efficient

Since Python does not have to build tuple structures to be
modifiable, they are simpler and more efficient in terms of memory
use and performance than lists
Thus, in our program when we are making “temporary variables”,
we prefer tuples over lists

Alessandro Leite A Crash Course in Python October 11th, 2019 38 / 60

Tuples are comparable

The comparison operators work with tuples and other sequences
(e.g., lists)
If the first item is equal, Python goes on to the next element, and
so on, until it finds elements that differ

numbers = (1, 5, 8)
print (numbers < (6, 10, 15))

Alessandro Leite A Crash Course in Python October 11th, 2019 39 / 60

Working with dictionaries

A dictionary is another fundamental data structure in Python
It associates values with keys
It enables us to quickly retrieve the value corresponding to a given
key
Dictionaries are like lists except that they use keys instead of
numbers to look up values
grades = dict() # initialize an empty dictionary
grades[’Alice’] = ’A’
grades[’Elsa’] = ’B’

grades = {"Alice": ’A’, ’Elsa’: ’B’}

We can look up the value for a key using square brackets
print(grades[’Alice’])

We get a KeyError if we ask for a key that is not in the dictionary
Dictionaries have a get method that returns a default value when
we look up for a key that is not in the dictionary

print(grades.get(’Mary’, None))

Alessandro Leite A Crash Course in Python October 11th, 2019 40 / 60

Retrieving a list of keys and values of a dictionary

We can get a list of keys of a dictionary through its method keys
grades = {"Alice": ’A’, ’Elsa’: ’B’}
names = grades.keys()

We can also get a list of values through the method values
grades = {"Alice": ’A’, ’Elsa’: ’B’}
grades_values = grades.values()

Dictionaries have a method called items that returns a list of
tuples, where each tuple is a key-value pair

grades = {"Alice": ’A’, ’Elsa’: ’B’}
items = grades.items()

Combining items, tuple assignment, and for, we can traverse
the keys and values of a dictionary in a single loop
grades = {"Alice": ’A’, ’Elsa’: ’B’}
for name, grade in grades.items():

print ("Student: {}, grade: {} ".format(name, grade))

Alessandro Leite A Crash Course in Python October 11th, 2019 41 / 60

Opening a file

Before we can read the contents of the file, we must tell Python
which file we are going to work with and what we will be doing with
the file
This is done with the open() function
The open(filename, mode) function returns a file handle, which is
a variable used to perform operations on the file
handle = open(filename, mode)
mode is optional and can be ’r’ if we are planning only to read
the file or ’w’ if we are going to write to the file

handle = open(’romeo-and-juliet.txt’, ’r’)

Alessandro Leite A Crash Course in Python October 11th, 2019 42 / 60

Counting the number of lines in a file

Open a file in read-only mode
Use a for loop to read each line
Count the lines and print out the number of lines

handle = open(’romeo-and-juliet.txt’, ’r’)
count = 0
for line in handle:
count += 1

print(’File has {} lines ’.format(count))

Alessandro Leite A Crash Course in Python October 11th, 2019 43 / 60

Reading the whole file

We can read the whole file into a single string with the method
read()
handle = open(’romeo.txt’, ’r’)
text = handle.read()
print(len(text))

Alessandro Leite A Crash Course in Python October 11th, 2019 44 / 60

Implementing a word count

Write a Python code that give a text file, reads it and:
1 Shows the number of unique occurrence of each word in the file
2 Shows the top-10 words used in the text

Alessandro Leite A Crash Course in Python October 11th, 2019 46 / 60

Working with modules

Certain features of Python are not loaded by default
It includes both features included as part of the language as well
as third-party features
To use these features, we need to import the modules that
contain them
One approach comprise in import the module itself
import math
x = float(input(’Enter a positive real number’))
math.sqrt(x)

In this case, math is the module containing mathematical
functions
It is also possible to import the need functions explicitly to use the
without qualification
from math import sqrt
x = float(input(’Enter a positive real number’))
sqrt(x)

Alessandro Leite A Crash Course in Python October 11th, 2019 47 / 60

Generating pseudo-random numbers

Python provides a modules called random to produce
pseudo-random numbers
The numbers are generated based on an internal state
We can control the state through a seed to get reproducible
results

import random
random.seed(123)
uniform_randoms = [random.random() for _ in range(4)]
print (uniform_randoms)

We can use the method choice to randomly pick one element of
a list
friends = [’Alice’, ’Sophie’, ’Elsa’, ’Alain’]
best_friend = random.choice(friends)

We can use random.sample to choose a sample of elements
without replacement
numbers = range(60)
winning_numbers = random.sample(numbers, 6)
Alessandro Leite A Crash Course in Python October 11th, 2019 48 / 60

Relational databases

Relational databases
Store data on rows and columns in tables
They power rely in its ability to efficiently retrieve data from those
tables and in particular where there are multiple tables and the
relationships between those tables involved in the query

Alessandro Leite A Crash Course in Python October 11th, 2019 49 / 60

Terminology

Database – contains many tables
Table or relation – contains tuples and attributes
Tuple or row – comprises a set of fields (i.e., columns) that
generally represents an “object” like a person or a music track
Attribute also known as column or field – comprise one of the
possibly many elements of data corresponding to the object
represented by the row

Alessandro Leite A Crash Course in Python October 11th, 2019 50 / 60

Relational model

A relation is defined as a set of tuples that have the same
attributes
A tuple usually represents an object and information about that
object
Objects are typically physical objects or concepts.
A relation is usually described as a table, which is organized into
rows and columns
All the data referenced by an attribute belong to the same domain
and conform to the same constraints

Alessandro Leite A Crash Course in Python October 11th, 2019 51 / 60

Structured Query Language

Structured Query Language (SQL) is the language we use to
manipulate a database
Through SQL we can:

1 Create a table
2 Retrieve the data
3 Insert and update data
4 Delete data

Alessandro Leite A Crash Course in Python October 11th, 2019 52 / 60

Database model

A database model or database schema is the structure or format
of a database described in a formal language supported by the
database management system.
In other words, a database model is the application of a data
model when used in conjunction with a database management
system
Examples of database systems comprise:

Oracle – large, commercial, enterprise-scale, very very tweakable
MySQL – simpler but very fast and scalable - commercial open
source
SQLite, Postgres, HSQL comprise other open sources database
systems

Alessandro Leite A Crash Course in Python October 11th, 2019 53 / 60

SQLite

SQLite is a popular database
It is free and fast and small
It is embedded in Python and a number of other languages
It can be manipulate through the SQLite
Browser (sqlitebrowser.org)

Alessandro Leite A Crash Course in Python October 11th, 2019 54 / 60

https://sqlitebrowser.org

Creating a database table

The code to create a database file and a table named tracks
with two columns in the database is

import sqlite3

conn = sqlite3.connect(’music.sqlite3’)
cur = conn.cursor()

cur.execute(’DROP TABLE IF EXISTS tracks ’)
cur.execute(’CREATE TABLE tracks (title TEXT, plays INTEGER)’)

conn.close()

The connect connects to the database and stores in the file
music.sqlite3 in the current directory
A cursor is like a file handle that we can use to perform
operations on the data stored in the database
Calling cursor() is conceptually similar to calling open() when
dealing with text files in Python

Alessandro Leite A Crash Course in Python October 11th, 2019 55 / 60

Storing data onto a table

We can add new data into a table using the SQL INSERT
operation

import sqlite3

conn = sqlite3.connect(’music.sqlite3’)
cur = conn.cursor()

cur.execute(’INSERT INTO tracks (title, plays) VALUES (?,
?)’, (’Thunderstruck’, 20))

cur.execute(’INSERT INTO tracks (title, plays) VALUES (?,
?)’, (’My Way’, 15))

conn.commit()
cur.close()

Alessandro Leite A Crash Course in Python October 11th, 2019 56 / 60

Retrieving the data of a table

import sqlite3

conn = sqlite3.connect(’music.sqlite3’)
cur = conn.cursor()

rows = cur.execute(’SELECT title, plays FROM tracks’)

for row in rows:
print (row)

conn.close()

Alessandro Leite A Crash Course in Python October 11th, 2019 57 / 60

Working with JSON

JavaScript Object Notation (JSON) is a standard file format that
uses human-readable text to transmit data objects consisting of
attribute-value pairs and array data types
It is used for storing and exchanging data independent of
programming language and platform
Python has a built-in package called json, which can be used to
create and read data in JSON format

import json
data = ’{ "name":"Elsa", "age":15, "city":"Australia"}’
people = json.loads(data)

print(people[’name’])

Alessandro Leite A Crash Course in Python October 11th, 2019 58 / 60

Dealing with database and JSON data

Every hour, the Paris City Hall publishes new data about the
bicycles available for usage (i.e., Velib) at bit.ly/2EkdKjZ
Write a Python function that reads the data and then insert them
into an SQLite database

Alessandro Leite A Crash Course in Python October 11th, 2019 60 / 60

http://bit.ly/2EkdKjZ

	Identifiers, expressions, and statements
	Identifiers and keywords
	Operators

	Control flows
	Iterators
	Defining functions

	Data Structures
	Lists
	Tuples
	Dictionaries

	Working with files
	Modules
	Randomness
	Relational Databases and SQLite
	JavaScript Object Notation

