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What is learning?
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Why learn is a crucial concept?

@ Learning goes beyond remembering individual experiences,
i.e., memorization.

@ Children, for instance, can generalize from previous experiences
very quickly.

@ Children generalizing from their specific experiences manifest a
predictable phenomenon.

@ ltis also referred as inductive reasoning or inductive inference.
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Why learn is an important concept?

The probably approximately correct (PAC) learning model

@ Learning process is carried out by concrete computation that
takes a limited number of steps.

@ The computation also requires only a similarly limited number of
interactions with the word during learning?.

@ Learning should enable organism to categorize new information
with a small error rate.

@ The induction process is not logically fail-safe. In other words, if
the world suddenly changes, but not the knowledge, then, no one
should expect or require good generalization in the future.

4L. G. Valiant. “A Theory of the Learnable”. In: Communication of the ACM
27.11 (1984), pp. 1134—-1142,
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Why learn is an important concept?

@ Learning: using past experience to guide future actions or to
modify a behavior.
@ Machine learning: programming computers to:

@ model phenomena

© by means of optimizing an objective function

© use data and examples, instead of expert knowledge, to perform
complex tasks automatically
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What is machine learning?

“Learning is any process by which a
system improves performance from ex-
perience”.

“Machine learning is concerned with
computer programs that automatically
improve their performance through expe-
rience”.,

N
Herbert Simon

Turing Award (1975)
Nobel Prize in Economics (1978)
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What is Machine learning?

Definition

Machine learning can be defined as the process of an algorithm
extracts patterns from data and to make predictions without being
explicitly programmed to do so?.

aA. L. Samuel. “Some Studies in Machine Learning Using the Game of
Checkers”. In: IBM J. Res. Dev. 3.3 (1959), pp. 210—229.
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A more formal definition of machine learn

ing

Definition

A computer program is considered to learn from experience E with
respect to some class of tasks T and performance measure P if its
performance tasks in T, as measured by P, improves with experience

EA4.

4Tom M. Michell. Machine Learning. McGraw-Hill Education, 1997.

Machine Improved
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Figure 1: Using machine learning to induce a prediction model from a
training dataset

Query Instance - Model - Prediction

Figure 2: Using the model to make predictions for new query instances



LOAN-SALARY

ID OCCUPATION AGE RATIO OuTCOME
1 industrial 34 2.96 repaid
2 professional 41 4.64 default
3 professional 36 3.22 default
4 professional 41 3.11 default
5 industrial 48 3.80 default
6 industrial 61 2.52 repaid
7 professional 37 1.50 repaid
8 professional 40 1.93 repaid
9 industrial 33 5.25 default
10 industrial 32 4.15 default

@ What is the relationship between the descriptive features
(OCCUPATION, AGE, LOAN-SALARY RATIO) and the target feature
(OUTCOME)?



When do we need machine learning?
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What are the reasons to rely on Machine Learning?

Data ———P»

Classical program ——— Answers
Rules————|

Data e Machine learning » Rules
Answers ——»| program

@ There is not a requirement to learn to calculate a payroll, for
instance.

@ Automatic learning is used when:

o Text or document classification: spam detection, automatically
determines if the content of a web page is inappropriate or too
explicit

e Humans are unable to explain their expertise (e.g., speech
recognition, computer vision)

e Lack of human expertise (e.g., bioinformatics) ©

o Tasks that are beyond human capabilities (e.g., analysis of
complex data sets: astronomical data, weather prediction, analysis
of genomic data).

-
P

Alessandro Leite Introduction to Machine Learning October 4th, 2019 13/68



Optical Character Recognition (OCR)

b -

@ Less programming code

@ Robust and easily adaptive

@ Less dependent on expert knowledge

@ Used in many applications due to its good performance
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Face detection




Object recognition




Autonomous Helicopter Control

SR b

Figure 3: Autonomous helicopter control
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The ability to learn grammars is hard-wired into
the brain. It is not possible to “learn” linguistic
ability—rather, we are born with a brain
apparatus specific to language representation.

~

B

Nodm Chomsky

Iu

There exists some “universal” learning
algorithm that can learn anything: language,
vision, speech, etc. The brain is based on it, and
we’re working on uncovering it. (Hint: the brain
uses neural networks)

Geoff Hinton

There is no “free lunch”: no learning is possible
without some prior assumption about the
structure of the problem (prior knowledge)




Data is the combustible of machine learning

Machine learning

Use data and examples, instead of expert knowledge, to automatically
create systems that perform complex tasks

Does smoking contribute to
lung cancer?

Yes, with p-value = 10~72

How long ago did cats and

dogs diverge?

* About 55 MY, with 95%
confidence interval [51,60]

* 99% of faces have System for
two eyes 2 Performing Task
* People with beards b g
buy less nail polish (e-g. Predictor)

(Rotation time)?
o« (avg radius)?
NP = adj NP
NP - det N
det > ‘the’
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Is machine learning only statistics and probability?

o

statistics

1

Machine Learning

R
Artificial intelligence,
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Comparing statistics techniques with machine learning methods

@ Statistical methods is
used to analyze the
data

@ Machine learning is
used to make
prediction

@ When we do with
machine learning, you
have to understand
statistics

@ When data is wide (e.g., over 100
features) — it's machine learning

@ Variables are correlated — it's
machine learning

@ Simple models are associated with
statistics (e.g., regression), while
fancy methods are associated with
machine learning (e.g., random
forests)
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What is the relationship of machine
learning with other fields?
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Artificial Intelligence (Al)

@ Machine learning is a subfield of artificial intelligence (Al):
e Systems living in an evolving environment must have the ability to
learn in order to adapt themselves
@ Machine learning algorithms are building blocks that make
computers behave intelligently by generalizing rather than merely
storing and retrieving data, as database systems usually do
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Machine learning and Al

Deep learning Example:
Shallow
Example: autoencoders
MLPs

Example: Example:

Logistic
regression

Representation learning

Machine learning

Figure 4: Relationships deep learning, machine learning, and Al
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Machine learning and other fields

Data mining Machine Artificial
Learning Intelligence
Quantifies Numbers Explains Patterns Predicts with models

Statistics

Behaves and reasons
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Role of statistics, and Computer Science

@ Statistics:
o build mathematical models to make inference from a sample
@ Computer Science: develop efficient algorithms to:

e solve the optimization problem
e represent and evaluate the model for inference
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How does machine learning work?
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Data
Science




A machine learning model is the combination of different

components

Model = Data + Features + Algorithms

@ Features are chosen based on some objective and domain
knowledge

@ Data are selected based on some objective and on descriptive
features

@ Algorithms are selected base on objectives + features + data

30/68
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@ Data

e What are its characteristics?

e How complete are they?

e How meaningful are them for the problem?
@ Features

e Which one are useful?

e Which ones can improve the final results (i.e., accuracy)?
@ Algorithms

e Which one is more adequate considering the data and their

characteristics?
e How complex are them?

o What are the parameters that must be tuned to improve the
performance?
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Machine learning’s goal

@ Learning general models from particular examples
e data are mostly cheap and abundant
o knowledge is expensive and scarce
@ However, because a training dataset is only a sample ML is an
ill-posed problem.
@ Example in retail:
e From customers’ transactions to consumers behaviors
e People who watched Lords of the Rings also watched Games of
Thrones
@ Goal: build a model that is a good and a useful approximation of
the data
@ An obvious criterion to drive this process is to look for models that

are consistent with the data
e Therefore, this may be an ill-posed problem
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Machine learning’s goal

@ Optimizing a performance criteria using example past
experiences (i.e., data)
@ What criteria should we use for choosing a model?
e Inductive bias
set of assumptions that define the model selection criteria of a
machine learning algorithm.
e There are two types of bias that we can use:
@ restriction bias
@ npreference bias
e Inductive bias is necessary for learning beyond previous
experiences
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Summary of how machine learning algorithms work

@ By searching through a set of potential models
@ There are two sources of information that guide this search:

© the training data
@ the inductive bias of the algorithm
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Types of Learning
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CLASS|CAL MACHINE LEARNING
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Unsupervised learning

ML algorithm | ———> | Data

Images, texts, @ <———>
meaures, etc.

Goal: learn a new representation of the data
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Clustering

Data

—

1—): {1'1,_:]'21--- -.JI:'I} = "Y

ML algorithm

Goal: group similar data points together

Useful to:

O
:>XX{C}

e Understand general characteristics of the data
e Infer some properties of an object based on how it relates to other

objects
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Clustering applications

@ Customer segmentation: find groups of customer with similar
buying behavior

@ Image compressions: find groups of similar pixels that can be
easily summarized

@ Topic modeling: group document based on the words they
contain to identify shared topics

@ Disease sub-typing: find groups of similar patients with closed
pathologies (e.g., symptoms level)
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Dimensionality reduction

>~ | ML algorithm ——> | Data

Data
;e R™
D: {:]'1,_:!'2,_--- ‘_;;'”} = X
e p moelp
<«————>
Images, texts, l:> ___________ : -
meaures, etc. < >

Goal: find a lower-dimensional representation of the data
Useful to:
@ reduce storage and computing time
e remove redundancies
e Visualization of the data (e.g., in 2 or 3 dimensions) and
interpretability
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Supervised learning

Data ——> | MLalgorithm | ———> | Predictor

D={zya9,- .} X ﬁ flal =y

f is the decision

function

{.[h‘. W2, U, ‘.U:'J}

Goal: make predictions
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Classification

Data ———> | ML algorithm | ———=> | Predictor

flz)y =~y
D= {ryx9,--- xnp X ﬁ
Binary classification

{Ule!f?elfﬁie"'eyn} _r)I,'E{D,_l}

Multi-class classification
yi € {0,1,--k}

good eater

human contact

Goal: make discrete predictions
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Classification

Given D = {Xx;, yi}i=1,., finds f such that f(x) = y

D = {Xi,Yi}ti=1,..n
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Classification

@ Face recognition: identify faces independently of pose, lighting,
make-up, and hair style

@ Character recognition: read letters or digits independently of
handwriting styles

@ Spam detection

@ Sound recognition: which music is playing on? Who composed
this music? Who is the singer?

@ Precision medicine: does this sample come from a sick or from a
healthy person?
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Regression

Data

—>
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Goal: make continuous predictions
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Regression’s applications

@ Algorithmic trade: what will be the price of this share?

@ Click prediction: how many clicks will this ad receive? How many
people will share this article on social media?

@ Electricity consumption: Do | need to turn on this power plant?
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Generalization

@ Separate your data set into training and validation set

@ It is usually easy to build a model that performs well on the
training data

@ But how well it performs on new data?

@ Use cross-validation to assess that your model can generalize to
independent data set

@ The fundamental goal of machine learning is to generalize beyond
the examples in the training set.
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What Can Go Wrong With ML?
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@ No free lunch!
@ What happens if we choose the wrong inductive bias:

@ underfitting
@ overfitting
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Data alone is not enough

No Free Lunch theorem

“For any two learning algorithms, there are
just as many situations (appropriately weighted)
in which algorithm one is superior to algorithm

D d Woloert two as vice versa, accordingly to any of the mea-
avia Y¥olper sures of superiority”

"David H. Wolpert. “The Lack of a Priori Distinctions Between Learning
Algorithms”. In: Neural Computation 8.7 (1996), pp. 1341-1390.
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Table 1: An age-income dataset

ID AGE INCOME

1 21 24,000
2 32 48,000
3 62 83,000
4 72 61,000
5 84 52,000
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Plotting the age-income data set
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Income
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Figure 5: Striking a balance between overfitting and underfitting when trying
to predict age from income

Alessandro Leite

Introduction to Machine Learning

October 4th, 2019

58/68



Correlation does not imply causation

Divorce rate in Maine
correlates with

Per capita consumption of margarine

2002 2008
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Correlation does not imply causation
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Feature engineering is the key

@ Raw data is rarely in a form that is amenable to learning
@ Therefore, we can build features from it that are.

Machine
Datasets Data Retrieval Learning
Algorithm

Y

Y
Data Feature Feature
ing & E ion & Scaling & Model
= —p 2 » : ! nt &
Wrangling Engineering Selection Modeling Evaluation & by AL
Monitoring
Data Preparation

L Re-iterate till satisfactory model performance
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Knowledge representation is a key concept in machine learning

Programming, like all engineering, is a lot of work: everything
need to be built from scratch

Learning is more like farming

Farmers combine seeds with nutrients to grow crops

Learners combine knowledge with data to grow program
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Summary
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In summary

@ Machine learning techniques automatically learn the relationship
between a set of descriptive features and a target feature from
a set of historical examples.
@ Machine learning is an ill-posed problem:
© generalize
© inductive bias
© underfitting
© overfitting
@ Striking the right balance between model complexity and simplicity
(between underfitting and overfitting) is the hardest part of
machine learning.
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Learning objectives
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Learning objectives

@ Understanding what machine learning is; i.e., define machine
learning

@ Know the prominent methods used in contemporary machine
learning

@ Learn how to use machine learning correctly

@ Given a problem:

o decide whether it can be solved with machine learning

e decide what type of machine learning technique you can use to
formalize it (e.g., supervised — regression, classification,
unsupervised — clustering, dimension reduction)

e describe it formally in function of design matrix, features, samples,
and target

@ Define a loss function
@ Define generalization
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